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a b s t r a c t

A facile approach to (E)-a-haloenamide moieties from ynamides using bromo- or iodotrimethylsilane is
described. The simple protocol enables a regio- and stereospecific hydrohalogenation of the triple bond in
gram-scale and provides a general entry for synthesis of novel enamide analogues.

� 2012 Elsevier Ltd. All rights reserved.

Enamides are basic building blocks in organic synthesis.1–3

Structural enamide components are frequently found in natural
products,4,5 and they recently have emerged as a novel type of use-
ful nucleophiles in stereoselective C–C and C–N bond-forming
reactions.6 From the synthetic point of view, haloenamides are ver-
satile variants of enamides. Iodoenamides are especially useful, as
they are readily converted into various functional groups by halo-
gen–metal exchange and are significant for carbon–carbon bond
forming reactions by way of transition-metal catalyzed cross-cou-
pling reactions.7–9 Thus, the weakly bonded iodide and electron-
rich olefin are highly reactive and potentially useful toward the
synthesized nitrogen-containing complex molecules.10,11 Despite
the utility of iodoenamides, their synthetic availability still re-
mains a challenge, because of the inherent difficulty in regio-
and stereoselective hydrohalogenation.12 The stoichiometric addi-
tion of hydrogen iodide (HI) to ynamide is one way to prepare iod-
oenamides; however the hygroscopic and gaseous HI is
inconvenient, and this method often results in poor regio- and ste-
reochemical control, and separation of the resultant isomeric mix-
tures is laborious.13

The pioneering work for efficient synthesis of iodoenamide
from ynamide via addition of HI was reported by Hsung and co-
workers in 2003:14 the in situ generation of HI from MgI2 and
H2O afforded a-iodoenamides with good selectivities of E/Z ratios.
The outcome of stereoselective addition is dictated by the polariza-
tion of the triple bond caused by nitrogen.15 According to the nat-

ure of the keteniminium resonance form, the iodine automatically
unites with the a-carbon.16 There is still room for improvement in
reaction efficiency, especially in terms of its scale and purity;17 the
prototype system worked using only 0.1 mmol of starting alkynes
and giving the products with E/Z mixtures.

Herein we report a completely regio- and stereospecific synthe-
sis18 of (E)-a-iodoenamides from ynamides using in situ generated
HI (Scheme 1). The in situ HI was generated from iodotrimethylsi-
lane (TMSI) and H2O,19,20 and quickly added to ynamide in nearly
quantitative yields, exclusively giving single isomer. The method
is compatible with a variety of reaction conditions and is applica-
ble to hydrobromination utilizing TMSBr. Thus, the protocol pro-
vides simple access to (E)-a-haloenamide moieties.

To initiate our search, we focused on TMSI-mediated hydroioda-
tion of 121 (Scheme 1), based on our previous report.19 The mixture
of 1 and TMSI22 was stirred at �78 �C for 15 min, and water was
added, and the reaction was allowed to warm to 0 �C. After usual
workup and purification, the product was isolated without decom-
position and identified as (E)-a-iodoenamide 2 according to an
authentic sample.23–25

As summarized in Table 1, the reactivity of 1 conducted via
Scheme 1 was evaluated.26 More than 1.5 equiv of TMSI was
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Scheme 1. Synthesis of 2 from 1 via iodotrimethylsilane-mediated hydroiodation.
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needed for completion (entries 1–3), and low temperature was
favorable (entries 3–6). The concentration was increased in entry
7 (1.0 mL CH2Cl2), however, the yield decreased to 80%. Other sol-
vents of toluene, hexane, acetonitrile were successful to give high
yields (entries 8–10). THF and cyclopentyl methyl ether gave only
acceptable yield of 2 (entries 11–12). For entry 13, addition of H2O
to the solvent in advance gave 94% yield. For entries 15 and 16,
(CH3)3SiBr and (CH3)3SiCl were used instead of TMSI; the corre-
sponding (E)-a-haloenamide was yielded in 99% and 28%, respec-
tively. The respective bond energies of Si–Cl, Si–Br, and Si–I are
113, 96, and 77 kcal/mol:27 the obstinate bond of Si–Cl would be
difficult to activate. It is worth noting that any (Z)- or b-isomer
of 2 was not observed on NMR spectra and TLC analyses from entry
1 through entry 16.

Next, the substrate generality with respect to the ynamides was
investigated, and the results are summarized in Scheme 2. 28 Evans
auxiliary 4a14 was successfully obtained in 99% yield without any
isomers. Application of Hsung’s method gave mixtures of
E:Z = 88:12.29 Iodide 4b immediately decomposed after the isola-
tion: on the other hand, bromide 4c and 4d were stable even in
neat form, presumably due to the stronger bond energy. Similar
stabilities of the vinyl halides were observed in 4e, 4f, 4p, and
4q, although 4j and 4k were both fragile oil. The carbamate,
sulfonamide, and amide groups are accepted for the hydroiodation

Scheme 2. The substrate scope of ynamides under the reaction conditions of 3 (1 equiv), solvent (8 mL/mmol of 3), and 1 M (CH3)3SiX in CH2Cl2 (2 equiv).

Table 1
Evaluation of the reactivity of 1 conducted via Scheme 1a

Entry TMSI (equiv) Temp (�C) Solvent Yieldb (%)

1c 1.2 �78 CH2Cl2 77
2 1.5 �78 CH2Cl2 98
3 2.0 �78 CH2Cl2 99
4 2.0 �20 CH2Cl2 98
5 2.0 0 CH2Cl2 85
6 2.0 25 CH2Cl2 71
7d 2.0 �78 CH2Cl2 80
8 2.0 �78 Toluene 98
9 2.0 �78 Hexane 99
10 2.0 �78 CH3CN 99
11 2.0 �78 THF 65
12 2.0 �78 Cyclopentyl methyl ether 63
13 2.0 �78 CH2Cl2/H2O (4% v/v) 94
14e 2.0 �78 CH2Cl2 95
15f 2.0 �78 CH2Cl2 99
16g 2.0 �78 CH2Cl2 28h

a Reaction conditions: 1 (1 mmol), solvent (8 mL), 1 M (CH3)3SiI in CH2Cl2, H2O
(20 mmol).

b Isolated yields after column chromatography.
c 23% of 1 was recovered.
d 1 mL of CH2Cl2 was used.
e CH3OH was added instead of H2O.
f (CH3)3SiBr was used instead of (CH3)3SiI.
g (CH3)3SiCl was used instead of (CH3)3SiI.
h Determined by 1H NMR.
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(4a–4i), and the transformation also worked well in the presence of
functional groups such as OMe and CN (4j–4m). The reactions at
gram-scale successfully performed in 4f, 4g, 4j, 4k, and 4m. The
synthesis of 4n–4s derived from aliphatic alkynes proceeded very
well, although 4t decomposed in the process of column chroma-
tography: at the present time it is difficult to predict which prod-
ucts of (E)-a-haloenamides are inclined to decompose. Notably,
all the enamides were observed as single isomers even in crude
states, and any E/Z isomeric mixtures were not obtained.

The mechanism for the resulting in perfect stereochemical con-
trol to produce only (E)-adducts is not yet fully known. Deuterioio-
dation of 1 was carried out with D2O, and the deuterium was
thoroughly incorporated for H of 2 as we expected. The result indi-
cates that this reaction does not follow a stepwise path. Possible
chelation30 of the silicon atom with the nitrogen atom and/or the
oxygen atom of the electron-withdrawing group would provide
concerted syn-addition of HI toward the triple bond.14,15,31

In conclusion, commercially available TMSI and TMSBr were
found to convert ynamides into (E)-a-haloenamides in high yields
along with the perfect regio- and stereochemical outcomes. The
method completes the reaction quickly under routine conditions,
and was readily amenable to scale-up. This approach showed
excellent substrate compatibility, and afforded a wide variety of
new (E)-a-haloenamides. The synthetic utility of the products is
clear and we hope this reliable methodology finds widespread
use in organic synthesis. Application and mechanistic elucidation
are ongoing for further development of this reaction and will be re-
ported in due course.
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